Scripps VIVO scripps research logo

  • Index
  • Log in
  • Home
  • People
  • Organizations
  • Research
  • Events
Search form

Blocking of feline immunodeficiency virus infection by a monoclonal antibody to cd9 is via inhibition of virus release rather than interference with receptor binding

Academic Article
uri icon
  • Overview
  • Identity
  • Additional Document Info
  • View All
scroll to property group menus

Overview

authors

  • deParseval, A.
  • Lerner, D. L.
  • Borrow, P.
  • Willett, B. J.
  • Elder, John

publication date

  • August 1997

journal

  • Journal of Virology  Journal

abstract

  • A monoclonal antibody, MAb vpg15, inhibits feline immunodeficiency virus (FIV) infection in tissue culture. The antibody is directed to a determinant of the feline cell surface marker, CD9, implying that CD9 may serve as a viral receptor or coreceptor in this system. In cells expressing CD9, MAb vpg15 markedly delayed acute virus infection in terms of reverse transcriptase activity detected in cell culture supernatants. This effect was evident if the antibody was added before, immediately after, or 24 h after virus infection. Binding experiments showed that MAb vpg15 did not block virus binding to the cells. PCR analyses at various intervals postinfection also indicated that MAb vpg15 did not block virus uptake, reverse transcription of viral RNA, or integration into host cell DNA. Multiply spliced mRNAs were detected up to 24 h postinfection in both control and MAb vpg15-treated cells. However, viral mRNAs were markedly diminished in MAb vpg15-treated cells after this time, consistent with a failure of the FIV infection to spread in the cell culture. Treatment of chronically infected cells with MAb vpg15 also caused a sharp diminution in viral particle production, while viral mRNA levels were the same in both untreated and MAb-treated infected cells. Analyses of intracellular and extracellular levels of virus-associated antigens showed an enhanced accumulation of intracellular p24. These findings are consistent with the interpretation that MAb vpg15 acts at a posttranscriptional stage by interfering with the assembly and/or release of virus from the cell.

subject areas

  • Animals
  • Antibodies, Monoclonal
  • Antigens, CD
  • Antigens, CD9
  • Cats
  • Cell Line
  • Immunodeficiency Virus, Feline
  • Membrane Glycoproteins
  • RNA, Viral
  • Receptors, Virus
  • Transcription, Genetic
scroll to property group menus

Identity

PubMed Central ID

  • PMC191826

International Standard Serial Number (ISSN)

  • 0022-538X

PubMed ID

  • 9223460
scroll to property group menus

Additional Document Info

start page

  • 5742

end page

  • 5749

volume

  • 71

issue

  • 8

©2021 The Scripps Research Institute | Terms of Use | Powered by VIVO

  • About
  • Contact Us
  • Support