Scripps VIVO scripps research logo

  • Index
  • Log in
  • Home
  • People
  • Organizations
  • Research
  • Events
Search form

Cell-surface actin binds plasminogen and modulates neurotransmitter release from catecholaminergic cells

Academic Article
uri icon
  • Overview
  • Identity
  • Additional Document Info
  • View All
scroll to property group menus

Overview

authors

  • Miles, Lindsey
  • Andronicos, N. M.
  • Baik, N.
  • Parmer, R. J.

publication date

  • December 2006

journal

  • Journal of Neuroscience  Journal

abstract

  • An emerging area of research has documented a novel role for the plasminogen activation system in the regulation of neurotransmitter release. Prohormones, secreted by cells within the sympathoadrenal system, are processed by plasmin to bioactive peptides that feed back to inhibit secretagogue-stimulated release. Catecholaminergic cells of the sympathoadrenal system are prototypic prohormone-secreting cells. Processing of prohormones by plasmin is enhanced in the presence of catecholaminergic cells, and the enhancement requires binding of plasmin(ogen) to cellular receptors. Consequently, modulation of the local cellular fibrinolytic system of catecholaminergic cells results in substantial changes in catecholamine release. However, mechanisms for enhancing prohormone processing and cell-surface molecules mediating the enhancement on catecholaminergic cells have not been investigated. Here we show that plasminogen activation was enhanced >6.5-fold on catecholaminergic cells. Carboxypeptidase B treatment decreased cell-dependent plasminogen activation by approximately 90%, suggesting that the binding of plasminogen to proteins exposing C-terminal lysines on the cell surface is required to promote plasminogen activation. We identified catecholaminergic plasminogen receptors required for enhancing plasminogen activation, using a novel strategy combining targeted specific proteolysis using carboxypeptidase B with a proteomics approach using two-dimensional gel electrophoresis, radioligand blotting, and tandem mass spectrometry. Two major plasminogen-binding proteins that exposed C-terminal lysines on the cell surface contained amino acid sequences corresponding to beta/gamma-actin. An anti-actin monoclonal antibody inhibited cell-dependent plasminogen activation and also enhanced nicotine-dependent catecholamine release. Our results suggest that cell-surface-expressed forms of actin bind plasminogen, thereby promoting plasminogen activation and increased prohormone processing leading to inhibition of neurotransmitter release.

subject areas

  • Actins
  • Animals
  • Catecholamines
  • Cattle
  • Cell Membrane
  • Cells, Cultured
  • Chromaffin Cells
  • Humans
  • Neurotransmitter Agents
  • PC12 Cells
  • Plasminogen
  • Plasminogen Activators
  • Protein Binding
  • Rats
scroll to property group menus

Identity

International Standard Serial Number (ISSN)

  • 0270-6474

Digital Object Identifier (DOI)

  • 10.1523/jneurosci.2070-06.2006

PubMed ID

  • 17167091
scroll to property group menus

Additional Document Info

start page

  • 13017

end page

  • 13024

volume

  • 26

issue

  • 50

©2021 The Scripps Research Institute | Terms of Use | Powered by VIVO

  • About
  • Contact Us
  • Support