Scripps VIVO scripps research logo

  • Index
  • Log in
  • Home
  • People
  • Organizations
  • Research
  • Events
Search form

Multifunctional compact zwitterionic ligands for preparing robust biocompatible semiconductor quantum dots and gold nanoparticles

Academic Article
uri icon
  • Overview
  • Identity
  • Additional Document Info
  • View All
scroll to property group menus

Overview

authors

  • Susumu, K.
  • Oh, E.
  • Delehanty, J. B.
  • Blanco-Canosa, J. B.
  • Johnson, B. J.
  • Jain, V.
  • Hervey, W. J.
  • Algar, W. R.
  • Boeneman, K.
  • Dawson, Philip
  • Medintz, I. L.

publication date

  • 2011

journal

  • Journal of the American Chemical Society  Journal

abstract

  • We describe the synthesis of a series of four different ligands which are used to prepare hydrophilic, biocompatible luminescent quantum dots (QDs) and gold nanoparticles (AuNPs). Overall, the ligands are designed to be compact while still imparting a zwitterionic character to the NPs. Ligands are synthesized appended to a bidentate dihydrolipoic acid- (DHLA) anchor group, allowing for high-affinity NP attachment, and simultaneously incorporate tertiary amines along with carboxyl and/or hydroxyl groups. These are placed in close proximity within the ligand structure and their capacity for joint ionization imparts the requisite zwitterionic nature to the nanocrystal. QDs functionalized with the four different compact ligands were subjected to extensive physical characterization including surface charge, wettability, hydrodynamic size, and tolerance to a wide pH range or high salt concentration over time. The utility of the compact ligand coated QDs was further examined by testing of direct conjugation to polyhistidine-appended protein and peptides, aqueous covalent-coupling chemistry, and the ability to engage in Förster resonance energy transfer (FRET). Conjugating cell penetrating peptides to the compact ligand coated QD series facilitated their rapid and efficient cellular uptake, while subsequent cytotoxicity tests showed no apparent decreases in cell viability. In vivo biocompatibility was also demonstrated by microinjecting the compact ligand coated QDs into cells and monitoring their stability over time. Inherent benefits of the ligand design could be extended beyond QDs as AuNPs functionalized with the same compact ligand series showed similar colloidal properties. The strong potential of these ligands to expand NP capabilities in many biological applications is highlighted.

subject areas

  • Animals
  • Biological Transport
  • COS Cells
  • Cell-Penetrating Peptides
  • Cercopithecus aethiops
  • Coated Materials, Biocompatible
  • Drug Design
  • Gold
  • Histidine
  • Hydrodynamics
  • Hydrogen-Ion Concentration
  • Ligands
  • Luminescent Agents
  • Metal Nanoparticles
  • Polyethylene Glycols
  • Quantum Dots
  • Recombinant Proteins
  • Salts
  • Semiconductors
  • Thioctic Acid
  • Wettability
scroll to property group menus

Identity

International Standard Serial Number (ISSN)

  • 0002-7863

Digital Object Identifier (DOI)

  • 10.1021/ja201919s

PubMed ID

  • 21612225
scroll to property group menus

Additional Document Info

start page

  • 9480

end page

  • 9496

volume

  • 133

issue

  • 24

©2019 The Scripps Research Institute | Terms of Use | Powered by VIVO

  • About
  • Contact Us
  • Support