Scripps VIVO scripps research logo

  • Index
  • Log in
  • Home
  • People
  • Organizations
  • Research
  • Events
Search form

Structure of the bifunctional acyltransferase/decarboxylase lnmk from the leinamycin biosynthetic pathway revealing novel activity for a double-hot-dog fold

Academic Article
uri icon
  • Overview
  • Identity
  • Additional Document Info
  • View All
scroll to property group menus

Overview

authors

  • Lohman, J. R.
  • Bingman, C. A.
  • Phillips, G. N.
  • Shen, Ben

publication date

  • February 2013

journal

  • Biochemistry  Journal

abstract

  • The β-branched C3 unit in leinamycin biosynthesis is installed by a set of four proteins, LnmFKLM. In vitro biochemical investigation confirmed that LnmK is a bifunctional acyltransferase/decarboxylase (AT/DC) that catalyzes first self-acylation using methylmalonyl-CoA as a substrate and subsequently transacylation of the methylmalonyl group to the phosphopantetheinyl group of the LnmL acyl carrier protein [Liu, T., Huang, Y., and Shen, B. (2009) J. Am. Chem. Soc. 131, 6900-6901]. LnmK shows no sequence homology to proteins of known function, representing a new family of AT/DC enzymes. Here we report the X-ray structure of LnmK. LnmK is homodimer with each of the monomers adopting a double-hot-dog fold. Cocrystallization of LnmK with methylmalonyl-CoA revealed an active site tunnel terminated by residues from the dimer interface. In contrast to canonical AT and ketosynthase enzymes that employ Ser or Cys as an active site residue, none of these residues are found in the vicinity of the LnmK active site. Instead, three tyrosines were identified, one of which, Tyr62, was established, by site-directed mutagenesis, to be the most likely active site residue for the AT activity of LnmK. LnmK represents the first AT enzyme that employs a Tyr as an active site residue and the first member of the family of double-hot-dog fold enzymes that displays an AT activity known to date. The LnmK structure sets the stage for probing of the DC activity of LnmK through site-directed mutagenesis. These findings highlight natural product biosynthetic machinery as a rich source of novel enzyme activities, mechanisms, and structures.

subject areas

  • Acyltransferases
  • Antibiotics, Antineoplastic
  • Carboxy-Lyases
  • Catalytic Domain
  • Crystallography, X-Ray
  • Lactams
  • Macrolides
  • Models, Molecular
  • Protein Conformation
  • Protein Folding
  • Streptomyces
  • Thiazoles
  • Thiones
scroll to property group menus

Identity

PubMed Central ID

  • PMC3567400

International Standard Serial Number (ISSN)

  • 0006-2960

Digital Object Identifier (DOI)

  • 10.1021/bi301652y

PubMed ID

  • 23320975
scroll to property group menus

Additional Document Info

start page

  • 902

end page

  • 911

volume

  • 52

issue

  • 5

©2021 The Scripps Research Institute | Terms of Use | Powered by VIVO

  • About
  • Contact Us
  • Support