Scripps VIVO scripps research logo

  • Index
  • Log in
  • Home
  • People
  • Organizations
  • Research
  • Events
Search form

The central melanocortin system directly controls peripheral lipid metabolism

Academic Article
uri icon
  • Overview
  • Identity
  • Additional Document Info
  • View All
scroll to property group menus

Overview

authors

  • Nogueiras, R.
  • Wiedmer, P.
  • Perez-Tilve, D.
  • Veyrat-Durebex, C.
  • Keogh, J. M.
  • Sutton, G. M.
  • Pfluger, P. T.
  • Castaneda, T. R.
  • Neschen, S.
  • Hofmann, S. M.
  • Howles, P. N.
  • Morgan, D. A.
  • Benoit, S. C.
  • Szanto, I.
  • Schrott, B.
  • Schurmann, A.
  • Joost, H. G.
  • Hammond, C.
  • Hui, D. Y.
  • Woods, S. C.
  • Rahmouni, K.
  • Butler, Andrew
  • Farooqi, I. S.
  • O'Rahilly, S.
  • Rohner-Jeanrenaud, F.
  • Tschop, M. H.

publication date

  • November 2007

journal

  • Journal of Clinical Investigation  Journal

abstract

  • Disruptions of the melanocortin signaling system have been linked to obesity. We investigated a possible role of the central nervous melanocortin system (CNS-Mcr) in the control of adiposity through effects on nutrient partitioning and cellular lipid metabolism independent of nutrient intake. We report that pharmacological inhibition of melanocortin receptors (Mcr) in rats and genetic disruption of Mc4r in mice directly and potently promoted lipid uptake, triglyceride synthesis, and fat accumulation in white adipose tissue (WAT), while increased CNS-Mcr signaling triggered lipid mobilization. These effects were independent of food intake and preceded changes in adiposity. In addition, decreased CNS-Mcr signaling promoted increased insulin sensitivity and glucose uptake in WAT while decreasing glucose utilization in muscle and brown adipose tissue. Such CNS control of peripheral nutrient partitioning depended on sympathetic nervous system function and was enhanced by synergistic effects on liver triglyceride synthesis. Our findings offer an explanation for enhanced adiposity resulting from decreased melanocortin signaling, even in the absence of hyperphagia, and are consistent with feeding-independent changes in substrate utilization as reflected by respiratory quotient, which is increased with chronic Mcr blockade in rodents and in humans with loss-of-function mutations in MC4R. We also reveal molecular underpinnings for direct control of the CNS-Mcr over lipid metabolism. These results suggest ways to design more efficient pharmacological methods for controlling adiposity.

subject areas

  • Adipocytes
  • Adipose Tissue
  • Animals
  • Behavior, Animal
  • Central Nervous System
  • Eating
  • Glucose
  • Humans
  • Insulin
  • Lipid Metabolism
  • Melanocortins
  • Melanocyte-Stimulating Hormones
  • Mice
  • Mice, Knockout
  • Rats
  • Rats, Sprague-Dawley
  • Receptor, Melanocortin, Type 4
  • Receptors, Melanocortin
  • Signal Transduction
  • alpha-MSH
scroll to property group menus

Identity

International Standard Serial Number (ISSN)

  • 0021-9738

Digital Object Identifier (DOI)

  • 10.1172/jc131743

PubMed ID

  • 17885689
scroll to property group menus

Additional Document Info

start page

  • 3475

end page

  • 3488

volume

  • 117

issue

  • 11

©2021 The Scripps Research Institute | Terms of Use | Powered by VIVO

  • About
  • Contact Us
  • Support