Scripps VIVO scripps research logo

  • Index
  • Log in
  • Home
  • People
  • Organizations
  • Research
  • Events
Search form

Lupus-prone mice as models to study xenobiotic-induced acceleration of systemic autoimmunity

Academic Article
uri icon
  • Overview
  • Research
  • Identity
  • Additional Document Info
  • View All
scroll to property group menus

Overview

authors

  • Pollard, Kenneth Michael
  • Pearson, D. L.
  • Hultman, P.
  • Hildebrandt, B.
  • Kono, Dwight

publication date

  • October 1999

journal

  • Environmental Health Perspectives  Journal

abstract

  • The linkage between xenobiotic exposures and autoimmune diseases remains to be clearly defined. However, recent studies have raised the possibility that both genetic and environmental factors act synergistically at several stages or checkpoints to influence disease pathogenesis in susceptible populations. These observations predict that individuals susceptible to spontaneous autoimmunity should be more susceptible following xenobiotic exposure by virtue of the presence of predisposing background genes. To test this possibility, mouse strains with differing genetic susceptibility to murine lupus were examined for acceleration of autoimmune features characteristic of spontaneous systemic autoimmune disease following exposure to the immunostimulatory metals nickel and mercury. Although NiCl(2) exposure did not exacerbate autoimmunity, HgCl(2) significantly accelerated systemic disease in a strain-dependent manner. Mercury-exposed (NZB X NZW)F1 mice had accelerated lymphoid hyperplasia, hypergammaglobulinemia, autoantibodies, and immune complex deposits. Mercury also exacerbated immunopathologic manifestations in MRL+/+ and MR -lpr mice. However, there was less disease acceleration in lpr mice compared with MRL+/+ mice, likely due to the fact that environmental factors are less critical for disease induction when there is strong genetic susceptibility. Non-major histocompatibility complex genes also contributed to mercury-exacerbated disease, as the nonautoimmune AKR mice, which are H-2 identical with the MRL, showed less immunopathology than either the MRL/lpr or MRL+/+ strains. This study demonstrates that genetic susceptibility to spontaneous systemic autoimmunity can be a predisposing factor for HgCl(2)-induced exacerbation of autoimmunity. Such genetic predisposition may have to be considered when assessing the immunotoxicity of xenobiotics. Additional comparative studies using autoimmune-prone and nonautoimmune mice strains with different genetic backgrounds will help determine the contribution that xenobiotic exposure makes in rendering sensitive populations susceptible to autoimmune diseases.

subject areas

  • Animals
  • Autoantibodies
  • Autoimmunity
  • Disease Models, Animal
  • Environmental Exposure
  • Female
  • Humans
  • Lupus Erythematosus, Systemic
  • Mercuric Chloride
  • Mice
  • Mice, Inbred AKR
  • Mice, Inbred MRL lpr
  • Mice, Inbred NZB
  • Nickel
  • Species Specificity
  • Xenobiotics
scroll to property group menus

Research

keywords

  • animal model
  • autoimmunity
  • lupus
  • mercury
  • nickel
  • xenobiotic
scroll to property group menus

Identity

International Standard Serial Number (ISSN)

  • 0091-6765

Digital Object Identifier (DOI)

  • 10.2307/3434334

PubMed ID

  • 10502538
scroll to property group menus

Additional Document Info

start page

  • 729

end page

  • 735

volume

  • 107

©2021 The Scripps Research Institute | Terms of Use | Powered by VIVO

  • About
  • Contact Us
  • Support