Scripps VIVO scripps research logo

  • Index
  • Log in
  • Home
  • People
  • Organizations
  • Research
  • Events
Search form

Identification of membrane proteins in the hyperthermophilic archaeon Pyrococcus furiosus using proteomics and prediction programs

Academic Article
uri icon
  • Overview
  • Research
  • Identity
  • Additional Document Info
  • View All
scroll to property group menus

Overview

authors

  • Holden, J. F.
  • Poole, F. L.
  • Tollaksen, S. L.
  • Giometti, C. S.
  • Lim, H.
  • Yates III, John
  • Adams, M. W. W.

publication date

  • October 2001

journal

  • Comparative and Functional Genomics  Journal

abstract

  • Cell-free extracts from the hyperthermophilic archaeon Pyrococcus furiosus were separated into membrane and cytoplasmic fractions and each was analyzed by 2D-gel electrophoresis. A total of 66 proteins were identified, 32 in the membrane fraction and 34 in the cytoplasmic fraction. Six prediction programs were used to predict the subcellular locations of these proteins. Three were based on signal-peptides (SignalP, TargetP, and SOSUISignal) and three on transmembrane-spanning alpha-helices (TSEG, SOSUI, and PRED-TMR2). A consensus of the six programs predicted that 23 of the 32 proteins (72%) from the membrane fraction should be in the membrane and that all of the proteins from the cytoplasmic fraction should be in the cytoplasm. Two membrane-associated proteins predicted to be cytoplasmic by the programs are also predicted to consist primarily of transmembrane-spanning beta-sheets using porin protein models, suggesting that they are, in fact, membrane components. An ATPase subunit homolog found in the membrane fraction, although predicted to be cytoplasmic, is most likely complexed with other ATPase subunits in the membrane fraction. An additional three proteins predicted to be cytoplasmic but found in the membrane fraction, may be cytoplasmic contaminants. These include a chaperone homolog that may have attached to denatured membrane proteins during cell fractionation. Omitting these three proteins would boost the membrane-protein predictability of the models to near 80%. A consensus prediction using all six programs for all 2242 ORFs in the P. furiosus genome estimates that 24% of the ORF products are found in the membrane. However, this is likely to be a minimum value due to the programs' inability to recognize certain membrane-related proteins, such as subunits associated with membrane complexes and porin-type proteins.
scroll to property group menus

Research

keywords

  • Pyrococcus furiosus
  • beta sheet porin
  • genomics
  • hydrophily
  • membrane proteins
  • proteomics
  • signal peptide
  • transmembrane alpha-helix
scroll to property group menus

Identity

PubMed Central ID

  • PMC2448401

International Standard Serial Number (ISSN)

  • 1531-6912

Digital Object Identifier (DOI)

  • 10.1002/cfg.110

PubMed ID

  • 18629240
scroll to property group menus

Additional Document Info

start page

  • 275

end page

  • 288

volume

  • 2

issue

  • 5

©2021 The Scripps Research Institute | Terms of Use | Powered by VIVO

  • About
  • Contact Us
  • Support